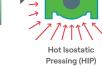


What is PM-HIP?


PM-HIP, is a highly flexible vetted manufacturing process to produce parts with forge-like isotropic properties.

Ti-6Al-4V	As-HIP PM	PM HIP + Anneal 1290F	Ingot Metallurgy, Anneal Forging	Alloy 706	HIP+HT PM N2 Atomized	HIP+HT PM Ar Atomized	Ingot Meta HT Forging
0.2% Yield Strength (ksi)	125	128	128	0.2% Yield Strength (ksi)	150	151	142
Tensile Strength (ksi)	136	137	138	Tensile Strength (ksi)	192	195	180
Elongation (%)	17	15	14	Elongation (%)	19	21	17
Reduction of Area (%)	42	40	36	Reduction of Area (%)	25	29	19
Fracture Toughness (ksi(in) ^½)	77	67	68				

Parts can be up to 5 feet in diameter and 10+ feet long, ranging in weight from 1lb to 10 tons and can be applied to virtually any material using high-quality, spherical, gas atomized powder. In fact, part size limits are dictated by the current maximum vessel size of the HIP systems used during PM-HIP.

PM-HIP Can Design

Fill With Powder, Outgas & Seal

Consolidation Complete

Remove PM-HIP Can

Advantages of PM-HIP compared to conventional and additive manufacturing methods:

- 1) Significantly reduced manufacturing and delivery times
- 2) Increased material utilization (reduced carbon footprint per component)
- Part consolidation (reduced failure modes and 3) improve inventory management)
- 4) Ability to efficiently support low volume OE & spare parts vs. castings or forgings
- Domestic fabrication of large, complex 5) components including internal cavities
- Reduced weldments, associated failure modes, 6) inspections and heat treatment issues
- Reduced machining and scrap, for improved 7) sustainability
- 8) Multi-materials for increased functionality and reduced costs

	PM-HIP	Castings	Forgings	AM L-PBF	AM-DED
COST (Low Volume)	JJ	~	~	~	JJ
PROPERTIES (Isotropic)	J JJ	$\checkmark\checkmark$	~	~	~
LEAD TIME (Low Volume)	JJ	\checkmark	~	\ \\	JJJ
COMPLEXITY	JJ	$\checkmark\checkmark$	\checkmark	\ \\	J J
MODIFICATIONS	J JJ	\checkmark	\checkmark	\ \\	J JJ
SIZE	JJJ	~~~	~~	~	11
INSPECTABILITY (UT)	111	-	1	1	1
RANGE OF ALLOYS	JJJ	11	11	~	•